- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Abbo, L (1)
-
Andretta, V (1)
-
Antiochos, S (1)
-
Bemporad, A (1)
-
Burtovoi, A (1)
-
Contarino, L (1)
-
Da_Deppo, V (1)
-
De_Leo, Y (1)
-
Elmhamdi, A (1)
-
Ferrente, F (1)
-
Fineschi, S (1)
-
Frassati, F (1)
-
Giordano, S (1)
-
Grimani, C (1)
-
Guglielmino, S L (1)
-
Heinzel, P (1)
-
Jerse, G (1)
-
Landini, F (1)
-
Lionello, R (1)
-
Lynch, B J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study presents observations of a large pseudostreamer solar eruption and, in particular, the post-eruption relaxation phase, as captured by Metis, on board the Solar Orbiter, on 2022 October 12, during its perihelion passage. Utilizing total-brightness data, we observe the outward propagation of helical features up to 3 solar radii along a radial column that appears to correspond to the stalk of the pseudostreamer. The helical structures persisted for more than 3 hr following a jet-like coronal mass ejection associated with a polar crown prominence eruption. A notable trend is revealed: the inclination of these features decreases as their polar angle and height increase. Additionally, we measured their helix pitch. Despite the 2 minute time cadence limiting direct correspondence among filamentary structures in consecutive frames, we find that the Metis helical structure may be interpreted as a consequence of twist (nonlinear torsional Alfvén waves) and plasma liberated by interchange reconnection. A comparison was performed between the helix parameters as outlined by fine-scale outflow features and those obtained from synthetic white-light images derived from the high-resolution magnetohydrodynamics simulation of interchange reconnection in a pseudostreamer topology by P. F. Wyper et al. A remarkable similarity between the simulation-derived images and the observations was found. We conjecture that these Metis observations may represent the upper ends of the spatial and energy scales of the interchange reconnection process that has been proposed recently as the origin of the Alfvénic solar wind.more » « lessFree, publicly-accessible full text available March 26, 2026
An official website of the United States government
